
Creativity of Computer Programmers 127

ANSWERING QUESTION ONE IN GOOGLE V. ORACLE:
THE CREATIVITY OF COMPUTER PROGRAMMERS

by RALPH D. CLIFFORD, FIRAS KHATIB, TRINA C. KERSHAW,
and ADNAN EL-NASAN*

ABSTRACT

There is a misconception that computer programs are extremely lim-
ited by set expressions required by the computer system or the problem
being coded and thus have little room for creativity. Under this fallacy,
some argue that copyright protection for software is practically nonexis-
tent as the Feist minimal creativity standard cannot be met. Others, in-
cluding Google in the recent Google v. Oracle case before the Supreme
Court, argue that even if the minimum creativity standard can be met,
most aspects of software constitute ideas rather than expressions so, again,
copyright protection fails under the merger doctrine.

Until recently, these factual assertions about the nature of computer
programs and their creation have not been empirically tested. The authors
have now done so. In a recently published, peer-reviewed study by the
authors, the creativity leading to the writing of a computer program was
established; indeed, the creativity used by a computer programmer is simi-
lar to that found in other disciplines that are acknowledged to be creative.
The study took examples of computer programs written by multiple pro-

*Ralph D. Clifford is a Professor of Law at the University of Massachusetts School
of Law. He has a computer science degree and spent almost twenty years as a
professional programmer before becoming a professor.

Firas Khatib is an Associate Professor of Computer and Information Science
at the University of Massachusetts Dartmouth. He specializes in bioinformatics,
citizen science, gamification, and applying these fields to K-12 education.

Trina C. Kershaw is a Professor of Psychology at the University of Massachu-
setts Dartmouth. One of her research specializations is measuring creativity in
laboratory and applied science (i.e., engineering, computer programming, etc.)
situations.

Adnan El-Nasan is a Assistant Teaching Professor of Computer and Informa-
tion Science at the University of Massachusetts Dartmouth. His research interests
include operating system optimization and security; cybersecurity, privacy, foren-
sics and reverse engineering; and innovation and commercialization in emerging
economies.

This article was supported by a writing grant from the University of Massa-
chusetts School of Law. The authors wish to thank Jessica Almeida of the Law
School Library who continues to be able to find the right materials based on the
incomplete descriptions she is given.

128 Journal, Copyright Society of the U.S.A.

grammers to perform identical functions and applied recognized psychol-
ogy-based tests to measure creativity. Although the study’s programs
were not particularly complex, the programmers found many significantly
different and creative ways to code them. The study established that
software — at least that more complicated than the program needed to
print “Hello, world!” — vary greatly based on the creative expressions
chosen by the program’s author. This creative expression deserves full
copyright protection.

Table of Contents

I. Introduction . 129
II. A Description of the Empirical Examination of Computer

Programs that Found Them to be Creative Products 132
A. Computer Programs—Even Simple Ones—Result from

Numerous Expressive Choices Made by the
Programmer (The PCDV) . 134

B. Computer Programs—Even Simple Ones—
Demonstrate Creativity (The CSDS) 135

C. Study Conclusion: Nontrivial Computer Programs Are
Creative Expressions . 137

III. The Legal Consequences that Result from the Finding that
Programmers Express Creativity . 138
A. The Feist Creativity Requirement in Copyright Law is

Easily Satisfied for the Vast Majority of Computer
Software, Including the APIs in Google v. Oracle 138

B. As with Other Creative Expressions, the Merger
Doctrine Needs to be Limited to its Proper, Narrow
Role . 139
1. Computer Software that Performs a Nontrivial

Function Does Not Merge . 142
2. Software that Creates a Programming Language

Does Not Merge . 144
C. Conclusion: Software is a Fully Expressive Work 146

IV. Applying the Idea/Expression Dichotomy to Computer
Programs: Using the Abstraction-Filtration-Comparison
Approach Appropriately . 147

A. A Non-Exhaustive List of Efficiency Definitions . . 148
B. The Use of Efficiency as a Measure of

Copyrightability Fails Causing Worthy Programs to
be Unprotected . 155

V. Conclusion . 156

Creativity of Computer Programmers 129

I. INTRODUCTION

In Google LLC v. Oracle America Inc.,1 an appeal concerning the
enforceability of Oracle’s2 Java API3 software copyrights, the Supreme
Court determined that the case could be resolved exclusively on a finding
of fair use.4 This left the first question posed in the case5 — whether the
computer code in question was even copyrightable — in limbo.6 It re-
mains an important question, however, as the almost 400 billion dollar in-
dustry in annual market sales7 is highly dependent on copyright to protect
proprietary rights in software.8

1 141 S. Ct. 1183 (2021).
2 The software in question was developed by a predecessor corporation to Ora-

cle, Sun Microsystems. Id. at 1190. Because all proprietary rights to this software
are now owned by Oracle, Oracle will be called the author of the software in this
article as the successor to Sun Microsystems.

3 “API” stands for Application Programmer Interface. See id. at 1191. These
allow programmers the ability to achieve commonly needed functions without hav-
ing to write a program for each. See id.

The general concept of an API has existed by that name since at least the
1990s. See MARY SWEENEY, VISUAL BASIC FOR TESTERS 211 (2001) (discussing
the “APIs” used in Microsoft Windows); Harold W. Thimbleby, Java in ENCYCLO-

PEDIA OF COMPUTER SCIENCE 937, 940 (Anthony Ralston et al. eds., 4th ed. 2000)
(describing APIs in Java). Of course, the concept without the name existed for
decades before that. See Macro Assemblers, ENCYCLOPEDIA OF COMPUTER SCI-

ENCE 99–100 (Anthony Ralston et al. ed. 4th ed. 2000) (describing achieving stan-
dard programming tasks by using the macro system available with 1960–1980-era
IBM computers); IBM CORP., OS/VS-VM/370 ASSEMBLER PROGRAMMER’S
GUIDE 69 (5th ed. 1982) (defining “library macro definition” as “IBM-supplied . . .
macro definitions”).

In the Google v. Oracle case, the APIs that Oracle developed as part of its
Java language were in litigation. See generally, Thimbleby, supra. For a current,
comprehensive list of these APIs, see Java Platform, Standard Edition & Java De-
velopment Kit Version 20 API Specification (draft 20-ea+1-3 ed. 2022), https://
download.java.net/java/early_access/jdk20/docs/api [hereinafter Java APIs].

4 141 S. Ct. at 1190 (“we assume, for argument’s sake, that the material was
copyrightable [b]ut we hold that the copying here at issue . . . constituted a fair
use.”).

5 See Brief of the Petitioner at i, Google LLC v. Oracle Am. Inc., 141 S. Ct. 1183
(2021) (No. 18-956), 2020 WL 104836 [hereinafter Google’s Brief].

6 See Google, 141 S. Ct. at 1190; Adam Mossoff, Declaring Computer Code Un-
copyrightable with a Creative Fair Use Analysis, 20 CATO SUP. CT. REV. 237,
238–39 (2020-21) . The lower appellate court had found that the APIs were pro-
tected by copyright. See Oracle Am., Inc. v. Google LLC, 886 F.3d 1179, 1210–11
(Fed. Cir. 2018), rev’d on other grounds, 141 S. Ct. 1183 (2021).

7 See Grand View Research, Market Analysis Report (Apr., 2021), https://
www.grandviewresearch.com/industry-analysis/business-software-services-market.

8 See, e.g., Rich Stim, Copyrighting Your Software—Why Bother?, Stanford Li-
braries, https://fairuse.stanford.edu/overview/faqs/software (last visited Jan. 13,

130 Journal, Copyright Society of the U.S.A.

As a practical matter, the lack of an answer to the first question by
the Supreme Court leaves a critical gap in the legal foundation of software
proprietary rights because so many challenge the appropriateness or com-
prehensiveness of copyrights for computer code.9 Some of these question
whether any computer software is creative enough to clear the Feist crea-
tivity requirement10 while others may not directly question the existence
of underlying creativity, but assert that software can only be expressed in
one way, triggering copyright unprotectability through the merger doc-
trine.11 Of course, even where software is acknowledged to be copyright-
able in theory, courts have mandated disqualifying tests for programs that
prevent copyright protection in fact: the tests under the guise that an “effi-
cient” piece of code is an idea rather than an expression, being the prime
example.12 Similarly, courts often engage in a post hoc analysis of the
copyrightability of a program, ultimately rejecting protection because the

2022) (“If you publish computer software, the single most important legal protec-
tion available to you is the federal copyright law.”).

9 See Google’s Brief, supra note 5, at 18 (arguing that the software APIs were
uncopyrightable as “one of only a few possible means of expression” of the under-
lying idea of the APIs); Michael D. Murray, Copyright, Originality, and the End of
the Scènes à Faire and Merger Doctrines for Visual Works, 58 BAYLOR L. REV.
779, 815 (2006) (accepting that “[t]echnical and practical requirements, design
standards, and appropriate methods of operation dictate programming choices
rather than the creative input of the creator. . . .”); Aaron Kozbelt, Scott Dexter,
Melissa Dolese, & Angelika Seidel, The Aesthetics of Software Code: A Quantita-
tive Exploration, PSYCH. OF CREATIVITY, AESTHETICS, AND THE ARTS, Feb., 2012,
at 57, 58 (“A common lay belief is that programming takes place in highly struc-
tured environments, relying solely on formal languages and standard techniques,
with little or no room for creativity.”) [hereinafter Kozbelt (2012)].

10 See Michael D. Murray, supra note 9; Justin Hughes, Restating Copyright
Law’s Originality Requirement, 44 COLUM. J.L. & ARTS 383, 409 n.64 (2021) (not-
ing that the courts have not defined creativity under Feist); Ralph D. Clifford, Ran-
dom Numbers, Chaos Theory and Cogitation: A Search for the Minimal Creativity
Standard in Copyright Law, 82 DENV. U. L. REV. 259, 268 (2004) (same); see gen-
erally Feist Pub., Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345 (1991); 17 U.S.C.
§ 102(b) (2020); Baker v. Selden, 101 U.S. 99 (1880).

11 See Google’s Brief, supra note 5, at 18 (arguing that the software APIs were
“one of only a few possible means of expression” of the underlying idea of the
APIs). See generally, Michael D. Murray, supra note 9 (declaring that “[t]echnical
and practical requirements, design standards, and appropriate methods of opera-
tion dictate programming choices rather than the creative input of the creator
. . . .”).
12 Computer Assoc. Int’l, Inc. v. Altai, Inc., 982F.2d 693, 708 (2d Cir. 1992)

(“While, hypothetically, there might be a myriad of ways in which a programmer
may effectuate certain functions within a program, — i.e., express the idea embod-
ied in a given subroutine — efficiency concerns may so narrow the practical range
of choice as to make only one or two forms of expression workable options.”). As
is discussed in part IV infra, this conception of computer efficiency is not based on
the reality of computer software works or on how programs are written.

Creativity of Computer Programmers 131

code can no longer be considered creative because the market has so pre-
ferred that particular expression that it has become an industry standard.13

The fault for this does not rest solely with the judicial system not un-
derstanding the technology; instead, at least part of the confusion in all
these cases stems from the lack of a scientific understanding of how com-
puter programmers write code. Until recently, the basic question — ”Are
programmers creative when they write code?” — had not been answered
empirically as only limited scientific studies of the discipline of coding had
been done.14 Unfortunately, these early foundational studies of program-
ming are either based on a non-empirically-based assertion that such crea-
tivity is used to code,15 or by determining that programmers feel that what
they do is creative without subjecting these feelings to an empirical
verification.16

Recently, the four authors completed the first empirical study that
directly examines whether the coding process is creative.17 As is more
fully described in the next section, the short answer is “Yes, programmers
are creative when they write code.” In addition, both the merger doctrine
and the efficiency-equals-idea limitations asserted against computer
software copyrights are likely to be of limited usefulness as the reality of
how programs are created demonstrate the factual inapplicability of both.

13 See Jack E. Brown, “Analytical Dissection” of Copyrighted Computer
Software—Complicating the Simple and Confounding the Complex, 25 ARIZ. ST.
L.J. 801, 811–29 (1993) (discussing cases); Google, 141 S. Ct. at 1203 (allowing fair
use copying because it “allow[ed] programmers to call upon those tasks without
discarding a portion of a familiar programming language and learning a new
one.”).
14 See P.J. Barnett & R. Romeike, Creativity Within Computer Science in CAM-

BRIDGE HANDBOOK OF CREATIVITY ACROSS DOMAINS 299 (J.C. Kaufman, V.P.
Glãveanu, & J. Baer eds. 2017); R.L. GLASS, SOFTWARE CREATIVITY 2.0 (2006);
M. Knobelsdorf, & R. Romeike, Creativity as a Pathway to Computer Science, in
ITICSE ‘08: PROC. OF THE 13TH ANN. CONF. ON INNOVATION AND TECH. IN COM-

PUT. SCI. EDUC. 286 (J. Amillo, C. Laxer, E. Menasalvas, & A. Young eds., 2008);
Kozbelt (2012), supra note 9; Aaron Kozbelt, Scott Dexter, Melissa Dolese, Daniel
Meredith & Justin Ostrofsky, Regressive Imagery in Creative Problem-Solving:
Comparing Verbal Protocols of Expert and Novice Visual Artists and Computer
Programmers, 49 J. OF CREATIVE BEHAV. Dec., 2015, at 263 [hereinafter Kozbelt
(2015)]; D. Saunders & P. Thagard, Creativity in Computer Science in CREATIVITY

ACROSS DOMAINS: FACES OF THE MUSE 171 (J.C. Kaufman & J. Baer eds. 2005).
15 See DONALD E. KNUTH, FUNDAMENTAL ALGORITHMS at v (2d ed. 1973); Don-

ald E. Knuth, Computer Programming as an Art, 17 COMM. OF THE ACM 667
(1974).

16 See Kozbelt (2012), supra note 9; Kozbelt (2015), supra note 14.
17 Trina C. Kershaw, Ralph D. Clifford, Firas Khatib, & Adnan El-Nasan, An

Initial Examination of Computer Programs as Creative Works, PSYCH. OF AES-

THETICS, CREATIVITY, AND THE ARTS (Jan. 27, 2022), http://dx.doi.org/10.1037/
aca0000457 (peer-reviewed) [hereinafter Programming Creativity].

132 Journal, Copyright Society of the U.S.A.

After these study findings are summarized, the final section of this article
will discuss the appropriate — and factually-based — contours of these
copyright doctrines as they are applied to computer software. Through the
discussion, it will become clear that the answer to question one in Google
v. Oracle should have been “Yes, computer software is a type of cre-
atively-based expression of ideas that obtains copyright protection, includ-
ing the APIs in question in the case.”18

II. A DESCRIPTION OF THE EMPIRICAL EXAMINATION OF
COMPUTER PROGRAMS THAT FOUND THEM TO BE
CREATIVE PRODUCTS

To investigate whether computer programmers are creative when
they write software, the authors designed an empirical study.19 Two scales
were used to assess creativity.20 The first scale, known as the “Creative
Solution Diagnosis Scale” or “CSDS” is an existing, well-regarded psycho-
logical measurement of the human creativity involved in creating func-
tional products such as engineering designs and computer software.21 It
evaluates creativity using a defined set of factors that have been found to
be associated with different aspects of creativity.22 To use the CSDS, the
product is examined by individuals who have the expertise to understand
it and how it works.23 For the Programming Creativity study, the software
examples were appraised by expert-, peer-, and self-evaluators.24

As a supplement to the CSDS and to provide a more objective mea-
surement of the expressive variation within the code, the authors defined a

18 This article does not examine the appropriateness of the fair use finding in
Google. This is consistent with the authors’ position in their amicus brief in the
case. See Brief of Amicus Curiae Interdisciplinary Research Team on Programmer
Creativity in Support of Respondent at 4, Google LLC v. Oracle Am. Inc., 141 S.
Ct. 1183 (2021) (No. 18-956).

19 See Programming Creativity, supra note 17. This law review article will summa-
rize the methodology and findings of the peer-reviewed Programming Creativity
study, but will not present the full details of the empirical approach used nor of the
statistical analysis done. For a more comprehensive understanding of these aspects
of the study including a comprehensive presentation of the statistical methods
used, please consult the scientific work. See id.
20 See id. at 3.
21 See id. at 2. The CSDS was designed to measure the creativity involved in

building functional products. See David H. Cropley & James C. Kaufman, Measur-
ing Functional Creativity: Non-Expert Raters and the Creative Solution Diagnosis
Scale, J. OF CREATIVE BEHAVIOR, June, 2012, at 119, 120–22.

22 See Programming Creativity, supra note 17, at 4.
23 See Cropley & Kaufman, supra note 21, at 123–26.
24 See Programming Creativity, supra note 17, at 4. The expert evaluator was Pro-

fessor El-Nasan; the students evaluated their own program as well as programs
written by other students. Id.

Creativity of Computer Programmers 133

second scale known as the “Program Control and Descriptive Variables”
or “PCDV” evaluation.25 This scale involved the analysis of the source
code produced in the study to determine the number of times each funda-
mental control statement (such as “IF” or “FOR”) was used.26 Each pro-
gram was examined by our research assistants (who were trained in
computer science, not law) who counted the number of each kind of con-
trol statement it contained.27 By combining the seven counts into a single
descriptive numeric code, a fourteen-digit number was created that cap-
tured the essence of the expression of the algorithm being implemented
while excluding trivial variations such as differences among them in the
names chosen for variables.28 If two independently developed computer
programs have the same code, the PCDV supports the conclusion that
there is no meaningful variation in expression between the two pro-
grams.29 If, on the other hand, the PCDV code is different, a nontrivial
variation exists.30 To determine the overall variation within a set of pro-
grams, the total number of unique PCDV codes can be divided by the total
number of programs, giving a single number (the “PCDV Ratio”) that es-
tablishes the percentage of variation among the code samples.31

25 See id. at 4–5.
26 Id. The statements chosen for analysis are universal as all computer languages

capable of implementing a defined procedure contain them, either with its com-
mon name, i.e., “FOR” statement, or with a variant, i.e., “DO” or “PERFORM.”
For examples of the PCDV in operation, see id. at 12–13.
27 See id. at 5.
28 See id. This is not to imply that the choice of variable names is irrelevant to

measuring creativity as choosing variable names “that mean something” has long
been recommended as part of good programming practice. BRIAN W. KERNIGHAN

& P.J. PLAUGER, THE ELEMENTS OF PROGRAMMING STYLE 145 (2d ed. 1978). Of
course, what “means something” to one person might be undecipherable by an-
other. See Alvaro Videla, Meaning and Context in Computer Programs, COMM. OF

THE ACM, May, 2022, at 56. Consequently, the choice of a variable name is likely
to be creative, too. After all, Hemingway could have named his novel “The Bull
Fight,” but doing so could easily change the nature of the work.

As the Programming Creativity study was done, no achievable way to measure
the difference between variable names objectively was found. If it was simply ad-
ded to the PCDV statistic, all programs would be found to be unique. At the detail
level, however, one needs to decide if calling a variable i is different and creative
from calling it j or n. Consequently, the decision was made to not measure this
variation among the program samples submitted as this lessens the quantity of
variation that would be found, making the creativity evaluation more conservative.

29 See Programming Creativity, supra note 17, at 5.
30 See id.
31 See id. A small number would indicate little or no variation (the smallest possi-

ble number is the reciprocal of the sample size); a large number indicates more
variation (the largest possible number is one which indicates every example pro-
gram is unique). See id.

134 Journal, Copyright Society of the U.S.A.

We used graduate-level students, all of whom were experienced pro-
grammers, to obtain the data used in the study.32 Each student, as part of
their homework assignment in the course being taught by Professor Kha-
tib, was required to create several programs that implemented
bioinformatics algorithms.33 The assignments used in the study required
the students to solve two coding problems both correctly and using no
more than five minutes of execution time.34 Other than these minimal in-
structions, each student was free to choose how to solve the problem.35

Twenty-three students produced code that solved the two problems.36

Each of these programs were evaluated using both the PCDV and CSDS
scales.37 The primary findings of the study are presented in the next two
sections. As the PCDV’s analysis of expressive variations is a critical pred-
ecessor to finding creativity, it will be discussed first, followed by the
CSDS.

A. Computer Programs—Even Simple Ones—Result from Numerous
Expressive Choices Made by the Programmer (The PCDV)

The amount of variation found in the Programming Creativity study
was surprising, particularly for the simpler of the two programs. For the
simpler problem, the calculated PCDV Ratio was 0.478 indicating that al-
most half of the students submitted code that differed from the programs
submitted by others.38 For the more complex problem the PCDV Ratio
was significantly higher at 0.870 establishing that only a few students sub-
mitted code that was expressively similar to another student’s program
while most created software that was measurably different from anyone
else’s code.39

32 See id. at 3–4.
33 See id. at 4.
34 See Id. The simpler problem used in the study computed the Hamming dis-

tance between two strings. Id. This algorithm is useful in studying mutations in
DNA. Id. The more complex problem used was to reconstruct a string from its k-
mer composition. Id. “This algorithm is important for genome assembly where
long strands of DNA have been fragmented into shorter pieces (k-mers).” Id.

The five-minute limit of time was significant as the quantity of data being
processed by the students was large. Id. It was impossible for a student to solve the
problem without using a computer program. Id.
35 See id. This freedom included the choice of programming language to use.
36 See id. Several students could not produce functional code for the two

problems. Id. at 3–4. As the students were all graduate students with significant
exposure to programming, this serves as an indication of the nontrivial nature of
the coding required. See id.
37 Id. at 4–5.
38 Id. at 7.
39 Id.

Creativity of Computer Programmers 135

Based on this, the conclusion is that programmers exercise considera-
ble variation in the way they write programs. As the Programming Crea-
tivity study concluded,

This result demonstrates that there is a large variation of programming
expressions that can be used to solve even simple coding problems. For
more complex programs, almost every version created was measurably
different from the others. Because the programs within each data set
solved an identical problem and had been shown to function correctly,
the differences in the coding solutions cannot be due to a need that is
dictated by the algorithm being implemented. We believe that the varia-
tions found are due to the exercise of individual creativity by the different
programmers.40

Of course, variation alone does not establish creativity although it is cer-
tainly a precursor for it.41 This is why the study included a second evalua-
tion scale, the CSDS, which is designed to measure whether creativity
itself is demonstrated in the programs being examined.

B. Computer Programs—Even Simple Ones—Demonstrate Creativity
(The CSDS)

The purpose of the CSDS is to measure whether human creativity is
present in a product.42

[The CSDS] consists of a series of statements allowing for the evaluation
of a creative product’s relevance and effectiveness, problematization,
propulsion, elegance, and genesis. Not only does the CSDS capture nov-
elty and appropriateness of the product, but it also captures the aesthetic
components of the product, which are important for evaluation of creativ-
ity in multiple domains, including computer programming.43

“Relevance and effectiveness” means that the “[program] displays knowl-
edge of existing facts and principles and satisfies the requirement in the
problem statement.”44 Both “problematization” and “propulsion” mea-
sure aspects of the program’s novelty.45 “Problematization” determines
whether the program “draws attention to problems in what already ex-
ists,” while “Propulsion” evaluates whether the program “adds to existing
knowledge,” and whether it “develops new knowledge.”46 Elegance ad-
dresses whether the “[program] strikes observers as beautiful (external el-

40 Id.
41 See id. at 2.
42 See id; Cropley & Kaufman, supra note 21, at 123–26.
43 Programming Creativity, supra note 17, at 2.
44 Cropley & Kaufman, supra note 21, at 124 (Table 2, Line 1).
45 Compare id. at 124 (Table 2, line 2, column “indicators”) with id. at 133 (Table

7, columns “Problematization” and “Propulsion”).
46 Id. at 124 (Table 2, Line 2); id. at 133 (Table 7, columns “Problematization”

and “Propulsion”).

136 Journal, Copyright Society of the U.S.A.

egance) [and] is well worked out and hangs together (internal
elegance).”47 Finally, “genesis” measures whether the program contains
“ideas [that] go beyond the immediate situation.”48

In the Programming Creativity study, each CSDS factor was measured
for the collected computer software.49 Relevance and effectiveness — did
the example computer program solve the problem it was designed to im-
plement and did it work within the constraints allowed? — were mostly
confirmed automatically because the students could not submit their code
unless it generated the correct answer within the allowed time-frame.50 To
determine relevancy and effectiveness beyond the minimum, expert-,
peer-, and self-evaluations were collected.51 Similarly for novelty, some of
the analysis was easily completed as the problem to be solved was fully
defined in the homework assignment which minimized the importance of
problematization. That reduced the question of novelty to a simpler in-
quiry — did the code contain anything that the evaluators found to be
unexpected or unique?52 In the study, this component of novelty was
measured using expert-, peer-, and self-evaluation of each program.53

Evaluating elegance within each code sample was nothing less than an ex-
amination of Professor Knuth’s “art” factor54 — did the code look special
either superficially or in its internal workings?55 Again, the study used a
multi-rater analysis protocol to evaluate this.56 Finally, genesis-propulsion
required an analysis of whether the programmer engaged in broader prob-
lem-solving — did the programmer go beyond the bare minimum needed
to satisfy the homework assignment? This scale, too, used a multi-rater
analysis protocol.57

The study included consistency confirmations as the evaluations
needed by the CSDS were subjective. First, raters who submitted facially
defective evaluations (by rating every programmer “excellent” in every
evaluation point, for example) were removed from the data.58 Then, the

47 Id. at 125 (Table 2, line 3).
48 Id. (Table 2, Line 4).
49 See Programming Creativity, supra note 17, at 6.
50 See id. at 4 (describing the Rosalind website).
51 See id. at 3–4.
52 Indeed, for statistical reasons, the factor analysis performed merged the pro-

pulsion and genesis factors into one. See id. at 6 (“Due to the multicollinearity
between these variables and the convergence of the scree plot for a four-factor
solution, Factors 1 and 5 were averaged into a single factor (propulsion-genesis)
for further analyses.”).
53 Id.
54 See supra, authorities cited note 15.
55 Programming Creativity, supra note 17, at 4
56 Id.
57 Id.
58 See id. at 5.

Creativity of Computer Programmers 137

evaluation of the remaining participants were shown to be highly consis-
tent with each other using the statistical methods that are designed to con-
firm this.59

The CSDS findings of the Programmer Creativity study are clear. The
study’s hypothesis posited that if creativity is a significant factor in the
development of a computer program, the CSDS rankings would show this
directly60 and it would be expected that a more complex problem would
be more highly rated on the CSDS problematization and propulsion-gene-
sis scales than a simple one.61 The study confirmed both findings.62

C. Study Conclusion: Nontrivial Computer Programs Are Creative
Expressions

There is significant expressive creativity used to express a computer
program, even simple ones like the easier problem used in Programmer
Creativity. The PCDV Ratio of 0.478 demonstrated that there were a mul-
titude of ways to express even a somewhat simple program.63 As code
becomes more complex, the possible variants grow quickly as demon-
strated by the PCDV Ratio of 0.870 on the more complex program. “Our
results support the idea that even within structured environments, there is
still room for creativity — the high degree of variation of expression seen
within the programs in our study supports assertions that variability in be-
havior is a key contributor to creativity.”64 Further, as problems get more
complex, more creativity is expressed.65 To apply this in the Google case,
telling multiple programmers to write the code needed to define the APIs
for Java would result in a PCDV Ratio near the maximum of one because
of the complexity of this task.

59 See id. at 5–6 (discussing results of Cronbach’s alpha, Guttman’s lambda, and
McDonald’s omega).
60 See id. at 2.
61 Id. at 3 & 7 (discussing second principle hypothesis). An analogy to this would

be to compare a “normal” highway bridge with one that crosses a major waterway.
Most bridges are fairly mundane and would not be described by most as creative,
but some gain fame and are considered beautiful and creative, e.g., the Golden
Gate or George Washington bridges, partially because of the complexity of the
engineering problem that has to be solved. Similarly, a more complicated com-
puter program is more likely to allow its programmer to achieve something that is
special.
62 Id. at 7 & Table 5.
63 Id. at 7.
64 Id. at 7–8.
65 Id. at 7 (finding that both variation as measured by the PCDV Ratio and crea-

tivity factors as measured by the CSDS increase with complexity).

138 Journal, Copyright Society of the U.S.A.

When the CSDS is combined with the PCDV, the conclusion that pro-
grammers are creative is inescapable. Unfortunately, as the next part of
this article explores, the legal system has failed to appreciate this.

III. THE LEGAL CONSEQUENCES THAT RESULT FROM THE
FINDING THAT PROGRAMMERS EXPRESS
CREATIVITY

A. The Feist Creativity Requirement in Copyright Law is Easily
Satisfied for the Vast Majority of Computer Software, Including
the APIs in Google v. Oracle

The Supreme Court has defined a minimal qualification for any ex-
pression to be protected by copyright. To be copyrightable, an expression
must

possess[] at least some minimal degree of creativity. To be sure, the req-
uisite level of creativity is extremely low; even a slight amount will suf-
fice. The vast majority of works make the grade quite easily, as they
possess some creative spark, “no matter how crude, humble or obvious”
it might be. Originality does not signify novelty; a work may be original
even though it closely resembles other works so long as the similarity is
fortuitous, not the result of copying.66

As the Court held, the requisite established by this standard is an “ex-
tremely low” one; indeed, if multiple expressions of an idea are possible,
the choice of one over the other constitutes an exercise of creativity.67

When applied to computer software, the Feist test is easily cleared. As
the authors’ Programming Creativity study established, programmers
make numerous choices as they write programs.68 Most of these choices
of expression are the programmer’s own and are not dictated by external
factors or supposed efficiency considerations.69 Even the Supreme Court
seemed to acknowledge that multiple versions of software was possible,
including the Java APIs in litigation.70 Indeed, to appropriate Oracle’s
APIs, Google “copied roughly 11,500 lines of code from the Java SE pro-

66 Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345 (1991).
67 See id. at 348; Clifford, supra note 10, at 295–96; Programming Creativity,

supra note 17, at 2; supra section II(A).
68 See Programming Creativity, supra note 17, at 7 (“[The study] result[s] demon-

strates that there is a large variation of programming expressions that can be used
to solve even simple coding problems.”); supra section II(A).
69 See Programming Creativity, supra note 17, at 3 (imposing an identical execu-

tion speed maximum requirement on all programmers); infra section IV (discuss-
ing the fallacy of using computer efficiency in copyright analysis). See also
authorities cited, supra note 14.
70 See Google LLC v. Oracle Am. Inc., 141 S. Ct. 1183, 1194 (2021).

Creativity of Computer Programmers 139

gram.”71 The programs studied in Programming Creativity were radically
shorter and consequently more limited in possible variation than Oracle’s
API code. The simpler programs involved in the study had as few as six,
and no more than twenty-six lines of code.72 Despite the minuscule size of
these programs created within the study, eleven unique solutions were cre-
ated for them.73 With 11,500 lines of code, the possible variations from
which to choose in creating this system would have been massively larger
than the choices available in the authors’ study. The direct conclusion of
this is that the APIs in litigation in the Google case demonstrated far more
creativity in their creation than is required by Feist.

Expanding from the Oracle v. Google case, any argument that asserts
that a nontrivial computer program lacks the modicum of creativity de-
manded by Feist74 should be treated with disdain. Writing a program, even
one as short as one with ten lines of code, involves numerous creative
choices that are sufficient to clear the “extremely low”75 copyright creativ-
ity requirement.76 Any program involved in litigation will most certainly
be longer than this.

B. As with Other Creative Expressions, the Merger Doctrine Needs to
be Limited to its Proper, Narrow Role

Just because a computer program is the result of creative expression
does not mean that all aspects of the software are protected under the
Copyright Act. Congress, in § 102(b),77 codified the long-recognized di-
chotomy between expressions that are within the ambit of copyright and

71 Id. at 1191.
72 See files in the directory “Spring 2019 data\homework info\HWK3 Prob 2-2

code” on file with the authors.
It should be noted that the number of lines of code is not a very precise calcu-

lation. Among the expressive tools available to a programmer is how the lines of
code are entered. For most modern languages, a single computer command can be
entered across multiple lines. By breaking the command into multiple lines, and
typically indenting some parts of it, the programmer can make the code more eas-
ily understood by a human reader without impacting the operation of the program.
See KERNIGHAN & PLAUGER, supra note 28, at 1–3 & 146–50. Similarly, program-
mers are encouraged to include “comments” within their code to explain what the
code does. See id. at 141–45. As these comments are generally not considered to
be “lines of code,” they have been omitted from the count given. In reality, what is
being counted is the number of commands used, not the physical number of lines.

73 Programming Creativity, supra note 17, at 7.
74 . Feist, 499 U.S. at 346.
75 Id. at 345.
76 See Clifford, supra note 10, at 295–96.
77 17 U.S.C. § 102(b).

140 Journal, Copyright Society of the U.S.A.

the underlying ideas that are not.78 Of course, as has been recognized for
almost as long, splitting an idea from its expression is not a trivial under-
taking;79 indeed, this process has been particularly challenging for com-
puter software.80 Unfortunately, the misconceptions about computer
software being addressed in this article and by the authors’ Programming
Creativity study too often form the basis of the difficulty.81 If the courts —
often based on the expressed views of commentators82 — fail to under-
stand the nature of computer software and its creation, the resulting deci-
sions become problematic.

Bateman v. Mnemonics, Inc.83 provides a good example of this. The
court, relying on the Computer Assoc. v. Altai case for key factual conclu-

78 H. REP. NO. 94-1476, at 57 (1976), reprinted in 1976 U.S.C.C.A.N. 5659, 5670
(“Section 102(b) in no way enlarges or contracts the scope of copyright protection
under the present law.”). The basic statement of the idea-expression dichotomy
can be found in Baker v. Selden, 101 U.S. (11 Otto) 99 (1879), and the hundreds of
cases that have interpreted it.

79 See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (1930) (L. Hand,
C.J.).
80 E.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 836 (10th Cir.

1993) (“Distinguishing between ideas and the expression of those ideas is not an
easy endeavor. . . .”). Compare Computer Assoc. Int’l, Inc. v. Altai, Inc., 982F.2d
693, 703–06 (2d Cir. 1992) with Whelan Assocs., Inc. v. Jaslow Dental Lab’y, Inc.,
797 F.2d 1222, 1235–37 (3d Cir. 1986). See generally, Clifford, supra note 10, at
282–89.
81 See, e.g., Computer Assoc. 982 F.2d at 707–10.
82 The copyright expertise of both Melville Nimmer (original author of Nimmer

on Copyright) and David Nimmer (current author) is appropriately and widely
recognized. See, e.g.,MacLean Assocs., Inc. v. Wm. M. Mercer-Meidinger-Hansen,
Inc., 952 F.2d 769, 778 (3d Cir. 1991); Galiano v. Harrah’s Operating Co., 416 F.3d
411, 419 (5th Cir. 2005); VMG Salsoul, LLC v. Ciccone, 824 F.3d 871, 880 (9th Cir.
2016). Neither, however, have computer science training or experience. See David
Nimmer, IRELL & MANELLA, https://www.irell.com/professionals-david-nimmer
LLP (last visited June 12, 2022, 10:15 AM). Unfortunately, the factual misconcep-
tion disproved by Programming Creativity is stated as a definitive fact in Nimmer
on Copyright. See 4 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPY-

RIGHT § 13.03[F][3] (2022) (“it is virtually impossible to write a program to per-
form particular functions in a specific computing environment without employing
standard techniques.”); indeed, this provision has been quoted in the case law to
establish that proposition. See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 982
F.2d 693, 709 (2d Cir. 1992).

When the authorities cited in Nimmer on Copyright for this factual conclusion
are examined, they turn out to be exclusively legal authorities. NIMMER & NIM-

MER, § 13.03[F][3], n.312. Of course, the legal authorities cited in Nimmer on Cop-
yright typically use that authority for so ruling. Consequently, these citations
establish a circle of authorities as many of the cases cited in the footnote are au-
thorities that relied on —indeed, often quoted — the misstatement in NIMMER. It
is time for this to be corrected.

83 79 F.3d 1532 (11th Cir. 1996).

Creativity of Computer Programmers 141

sions (which in turn had quoted NIMMER ON COPYRIGHT), stated that “in
many instances it is virtually impossible to write a program to perform
particular functions in a specific computing environment without employ-
ing standard techniques.”84 In reality, the opposite is true.85 Given the
same task and programming environment, the programmers in the au-
thors’ study produced widely divergent code.86 The simpler coding task
showed a variation in expression of almost 50% with eleven unique solu-
tions from twenty-three programmers while the more complicated
software had a variation of about 85% with twenty unique solutions from
the twenty-three programmers.87 Asserting that it is “impossible” to write
code to accomplish the same thing in different ways is demonstrably
wrong; in fact, for nontrivial programs, expressive differences will almost
always happen.

Unfortunately, once the factual misstatement is accepted and widely
circulated, a compounding misapplication of the copyright merger doc-
trine can occur.88 The doctrine operates when

it is so difficult to distinguish between an idea and its expression that the
two are said to merge. Thus, when there is essentially only one way to
express an idea, copying the expression will not be barred, since protect-
ing the expression in such circumstances would confer a monopoly of the
idea upon the copyright owner free of the conditions and limitations im-
posed by the patent law. By denying protection to an expression that is
merged with its underlying idea, we prevent an author from monopolizing
an idea merely by copyrighting a few expressions of it.89

But as the authors’ Programming Creativity study establishes — other
than for unrealistically simplistic “print ‘Hello, World’”-type programs —
there are always a multitude of different expressions possible to imple-
ment any computer program.90 Consequently, each new programmer can
re-express the underlying programming ideas (because this is always possi-
ble as a practical matter) and, if the coding is done without violating the
first programmers rights against copying and derivation under of the Cop-

84 Id. at 709 (quoting Computer Associates v. Altai which in turn was quoting
Nimmer on Copyright). See supra note 82 (establishing the circular nature of this
authority).
85 See supra section II(A).
86 See id.
87 Programming Creativity, supra note 17, at 7.
88 See, e.g., Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th

Cir. 1971) (“When the idea and its expression are thus inseparable, copying the
expression will not be barred” (quotation marks omitted)).
89 Mason v. Montgomery Data, Inc., 967 F.2d 135, 138 (5th Cir. 1992) (emphasis

added) (quotation marks and citations omitted).
90 Programming Creativity, supra note 17, at 7.

142 Journal, Copyright Society of the U.S.A.

yright Act, the new programmer’s code will not be infringing.91 This
would be true even in the unlikely event that the second programmer pro-
duces identical code.92 In summary, as with most other copyrighted
works, the merger doctrine is the rare exception for computer programs so
courts should hesitate before applying it.93

Of course, Google attempted to raise merger as a reason not to allow
copyright remedies in the Google v. Oracle case.94 Specifically, Google
asserted that the appropriated code had to be copied “[b]ecause no other
instructions can perform the declarations’ function, [so] merger excludes
them from copyright protection.”95 To examine this assertion both the
nature of the code taken and the nature of the function it performed must
be examined.

1. Computer Software that Performs a Nontrivial Function Does
Not Merge

The software involved in the case was far from simple or trivial. All
told, Google appropriated approximately 11,500 lines of code.96 These
lines of code defined the APIs that create a set of pre-written functions

91 See 17 U.S.C. §§ 106(1) & 106(2) (establishing the rights against copying and
derivation).
92 See Mazer v. Stein, 347 U.S. 201, 217–18 (1954) (holding that two people may

independently create identical works which would entitle both to copyrights).
Some courts fail to limit proof of substantial similarity to its proper role in copy-
right litigation, triggering confusion about this possibility. See, e.g., Universal Ath-
letic Sales Co. v. Salkeld, 511 F.2d 904, 907 (3d Cir. 1975) (requiring proof of
substantial similarity to prove infringement). More appropriately, proof of sub-
stantial similarity, when combined with access to the first author’s work, raises a
presumption that copying occurred. See Keeler Brass Co. v. Cont’l Brass Co., 862
F.2d 1063, 1065 (4th Cir. 1988) (“As most courts have recognized, persuasive direct
evidence of copying is seldom available to a plaintiff in an infringement contro-
versy. For that reason, courts have generally accepted circumstantial evidence to
create a presumption of copying. To raise this presumption, the plaintiff must
show that the alleged copier had access to the material and that the original mate-
rial and the alleged copy are substantially similar.”). The difference is significant
as presumptive proof can be rebutted by evidence that contradicts the ultimate
conclusion that copying occurred. See id. at 1066. Without this rebuttal being pos-
sible, Mazer’s independent creation would be impossible.

93 See, e.g., Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 838 (10th
Cir. 1993) (“The merger doctrine is applied as a prophylactic device to ensure that
courts do not unwittingly grant protection to an idea by granting exclusive rights to
the only, or one of only a few, means of expressing that idea.”).
94 See Google’s Brief, supra note 5, at 14.
95 Id.
96 Google LLC v. Oracle Am. Inc., 141 S. Ct. 1183, 1191 (2021). In comparison,

the simpler program in the authors’ Programming Creativity study had tens of lines
of code. See supra text accompanying note 72.

Creativity of Computer Programmers 143

that a programmer can use without having to write the needed operative
code.97 Some of these routines are simple like the “maximum” API dis-
cussed by the Supreme Court98 but most APIs are far more complicated,
allowing a programmer to create a new window on the screen, sort data
into order, retrieve data from a database, or implement security protocols
as examples.99

It is important to note that the lines of code taken were not just an
alphabetical list of available APIs; instead, they were an organized list
where Oracle had placed each API into a deliberately created structure
that it felt would make each API easier to find by the programmer, thus
making its Java language easier to use.100 This structure, being the crea-
tive expression of Oracle, is also within the ambit of copyright protection
as databases can be protected by copyright based on the creativity used to
select items for inclusion and for the overall organization imposed on
them.101 This expressive aspect of the Oracle APIs was copied by Google,
also.

Consequently, for Google to argue that merger applies to the APIs is
nonsense. With over 2,000 APIs defined, all of which would operate just
as effectively were they to be placed into different methods, classes, and
packages, Oracle’s arrangement is patently not the only choice available.
There could also be substantial variations in the names of the actual APIs.
The “maximum” API discussed by the Supreme Court102 could have just
as easily been named “max,” “larger,” “bigger,” or anything else that cap-
tures a comparison of relative size. While on a single API, this variation
would likely be determined to be de minimus,103 when applied over the
thousands of APIs defined within Java each of which could similarly be

97 See Google 141 S. Ct. at 1191. Google only copied the definitional code, not
the operational code, see id., so its copying was not comprehensive — a vast major-
ity of the needed code to reproduce the APIs was independently created. See supra
note 92. See generally supra note 3.

98 See Google 141 S. Ct. at 1192. It must be noted that there are 154 different
“maximum” functions defined within the Oracle APIs, each achieving a different
processing task. See Java APIs, supra note 3 (searching for “maximum”).
99 See Thimbleby, supra note 3, at 940; Java APIs, supra note 3.

100 See Google, 141 S. Ct. at 1191 (“[E]ach individual task is known as a ‘method.’
The API groups somewhat similar methods into larger ‘classes,’ and groups some-
what similar classes into larger ‘packages.’”).
101 See Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 348–49 (1991);
Infogroup, Inc. v. Database LLC, 956 F.3d 1063, 1066 (8th Cir. 2020) (finding
database creatively selected and organized).
102 See Google, 141 S. Ct. at 1192.
103 See, e.g., Sandoval v. New Line Cinema Corp., 147 F.3d 215, 217 (2d Cir. 1998)
(defining “de minimus” by holding that “the alleged infringer must demonstrate
that the copying of the protected material is so trivial as to fall below the quantita-
tive threshold of [copyright].”) (quotation marks and citation removed).

144 Journal, Copyright Society of the U.S.A.

renamed, the variation becomes significant enough for copyright
protection.

Of course, Google argued that these APIs are not “normal” software
because they are part of the Java language.104 As the next section dis-
cusses, however, this does not make a difference.105

2. Software that Creates a Programming Language Does Not
Merge

It must be noted that Java is not a natural thing.106 Before Oracle’s
employees expressed the programming language in the mid-1990s,107 there
was nothing known as Java. Further, Java is expressed as a computer pro-
gram108 so, because it was intended “to be used directly . . . in a computer
in order to bring about a certain result,” copyright protection was ex-
pressly intended by Congress.109

Despite this, it seems that Google considers the Java language itself as
a fact.110 The reality is different, however, as programming languages, in-
cluding Java, are brought into existence when their authors/programmers
creatively express them.111 In Java’s case, its author first fixed it in
1995.112 In copyright parlance, therefore, Java computer program is the
“work of authorship” that has been fixed and is owned by Oracle.113 For
merger to apply to Java, it would have to be unique, not in comparison to
itself as all works of authorship are identical to themselves, but in compar-
ison to the environment of similar expressions. In other words, can an
author express additional computer languages — or even more strictly an
object-oriented computer language — or has Oracle monopolized the field

104 See Google’s Brief, supra note 5, at 20.
105 Again, a fair use analysis is not being done. See supra note 18.
106 Cf. Castle Rock Ent., Inc. v. Carol Publ’g Grp., Inc., 150 F.3d 132, 138–39 (2d
Cir. 1998) (“each [Seinfeld television show] trivia question is based directly upon
original, protectable expression in Seinfeld. As noted by the district court, The
[defendant] did not copy . . . unprotected facts, but, rather, creative expression.”).
107 Thimbleby, supra note 3, at 937.
108 See id. at 937 & 940.
109 17 U.S.C. § 101 (defining “computer program”).
110 See Google’s Brief, supra note 5, at 3–4 & 19–20.
111 An analogy to computer programming languages is the Klingon “language”
created as part of the Star Trek franchise. See Klingon Language in WIKIPEDIA

(last edited May 29, 2022 1:31 (UTC)), https://en.wikipedia.org/wiki/
Klingon_language. Many fans of Star Trek have spent time exploring this area and
can even speak Klingon, but acknowledge as they are doing so that they are an
“authorized user” of the copyright that belongs to Paramount Pictures. See
KLINGON LANGUAGE INSTITUTE, https://www.kli.org (last visited June 20, 2022
5:02 PM),.
112 See Thimbleby, supra note 3, at 937.
113 See 17 U.S.C. §§ 102(a) & 201(a)-(b).

Creativity of Computer Programmers 145

with Java.114 The facts clearly demonstrate that no such monopoly of ex-
pression exists.

To begin, there are a vast number of programming languages that
have been created both before and after the time Java was created. A
commonly referenced list of “significant” languages (as of 2000) included
fifty different ones,115 extracted “from among the over 1,000 high-level
implemented languages . . . that have been defined since work in comput-
ing started.”116 Of course, programming languages did not stop develop-
ing in 2000. Since then, while many “older” languages are still used,117

many significant new languages have been created.118 Based on the list of
what is currently used, Java may be among the most popular language in
use today, but it clearly not the only programming language.119 Conse-
quently, with over 1,000 expressed programming languages, no one of
them merges as there are clearly more ways to express one.

It should be obvious, also, that there is nothing unique about Java that
should cause it to merge when other programming languages do not.
From a technical perspective, Java is an object-oriented language,120 but
so are many others.121 Java allows the creation of APIs,122 but so do
many others.123 From the computer science perspective, Java is a member

114 See Mason v. Montgomery Data, Inc., 967 F.2d 135, 138 (5th Cir. 1992).
115 Jean E. Sammet, Appendix VI in ENCYCLOPEDIA OF COMPUTER SCIENCE

1937, 1939–43. (Anthony Ralston et al. eds., 4th ed. 2000)
116 Id. at 1937.
117 COBOL, a language created in the late 1950s which operates in a significantly
different way than modern programming languages, still has a significant presence
in the computer world. See Patrick Stanard, Today’s Business Systems Run on
COBOL, TECHCHANNEL (Mar. 10, 2021), https://techchannel.com/Enterprise/03/
2021/business-systems-cobol. It is estimated that there are over 200 billion lines of
COBOL code in current use, often for core business systems, with over a billion
more lines added annually. See id.
118 See Brian Eastwood, The 10 Most Popular Programming Languages to Learn
in 2022 (June 18, 2020), NORTHEASTERN UNIVERSITY GRADUATE PROGRAMS,
https://www.northeastern.edu/graduate/blog/most-popular-programming-lan-
guages. Most of the subjects in the authors’ Programming Creativity study chose
from this list using mostly Python, but Swift was also present within the dataset.
119 Cf. id. (listing more programming jobs in Java than any other language).
120 See KEN ARNOLD, JAMES GOSLING, & DAVID HOLMES, THE JAVA PROGRAM-

MING LANGUAGE (4th ed. 2005). See generally, Peter Wegner, Why Interaction is
More Powerful than Algorithms, COMM. OF THE ACM, May, 1997, at 80 (describ-
ing the advantages of decreasing focus on algorithms).
121 See Trung Tran, Top 6 Object-Oriented Programming Languages, ORIENT

(Dec. 17, 2021), https://www.orientsoftware.com/blog/list-of-object-oriented-pro-
gramming-languages/ (listing Java along with C#, Python, Ruby, PHP, and
TypeScript).
122 See supra text accompanying notes 96–99.
123 See, e.g., James Briggs, The Right Way to Build an API with Python, TOWARDS

DATA SCIENCE (Sep. 11, 2020), https://towardsdatascience.com/the-right-way-to-

146 Journal, Copyright Society of the U.S.A.

— granted, a very popular member — of a pack of other similar lan-
guages. As it is imminently possible for a new author to express a language
like Java (because several already have), merger does not operate.

C. Conclusion: Software is a Fully Expressive Work

It is not surprising that the Feist case addressed the copyrightability of
a telephone book’s white pages.124 Clearly that database of the last cen-
tury lived just off the edge of human expression. As the Court deter-
mined, taking all data points (the names and phone numbers) and putting
them into the only logical order available (alphabetical) expressed nothing
that can fairly be called “creative.”125 Directly, Feist removes straight-for-
ward databases and other similar non-expressively creative works from the
ambit of copyright.

A computer program is not a database, however, nor is it like one.
Software is not comprised of a list of mandatorily chosen data items placed
into a predefined order; instead, it is a creatively written expression de-
signed, ultimately, to be operable on a computer system (while also ex-
plaining the details of its operation to those who read its code).126 The
fact that programs can operate on a computer does not mean that they
lack in copyrightable content, however. As one court said, “Although
processes themselves are not copyrightable, an author’s description of that
process, so long as it incorporates some originality, may be protect-
able.”127 As the Programming Creativity study established, all nontrivial
computer programs do this. In other words, a computer program is a
description of a process to be achieved that required creativity by its
programmer for its existence. It is not, therefore, a question of how little
of a program is protectable by copyright; it is a question of how little of it
is an idea. This, in turn, requires a careful application of the methods used
to dissect the ideas from the expression in computer software.

build-an-api-with-python-cd08ab285f8f; Ajit Mungale, C# and API, C#CORNER

(Dec. 30, 2005), https://www.c-sharpcorner.com/article/C-Sharp-and-api; supra
note 3.
124 Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., Inc., 499 U.S. 340, 342 (1991).
125 See id. at 345.
126 See supra section II.
127 Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 837 (10th Cir.
1993).

Creativity of Computer Programmers 147

IV. APPLYING THE IDEA/EXPRESSION DICHOTOMY TO
COMPUTER PROGRAMS: USING THE ABSTRACTION-
FILTRATION-COMPARISON APPROACH
APPROPRIATELY

As discussed above, all nontrivial computer programs are expressive
and should obtain copyright protection as a result. Having done so, of
course, does not answer all of the questions raised by computer software
copyrights. Section 102(b)’s idea/expression dichotomy still requires ex-
clusion of some aspects of all computer programs (and all other works of
authorship, for that matter).128 Fundamentally, copyright requires that
the ideas underlying the expressed code remain available despite the
claimed copyright.129

Courts have been addressing this issue in software over the last de-
cades.130 Not surprisingly, most courts have relied on specialized version
of the typical copyright deconstruction analysis131 — the abstraction-filtra-
tion-comparison test132 — to coordinate this. By breaking the software
down in multiple ways, the line between idea and expression can be
drawn.133 What does not work, however, is assuming that there is a simple
way to do this, or that examining one aspect of a computer program will
result in an accurate placement of the line. The primary example of courts
doing this in an inappropriate and destructive way is when they conflate
“efficiency” with a lack of creative expression.134 Under this approach, if
“efficiency” is found within the software, the program is to be treated as
an idea rather than an expression under § 102(b).135

128 See, e.g., 17 U.S.C. § 102(b); Computer Assocs. Int’l, Inc. v. Altai, Inc., 982
F.2d 693 (2d Cir. 1992); Whelan Assocs., Inc. v. Jaslow Dental Lab’y, Inc., 797 F.2d
1222 (3d Cir. 1986).
129 See 17 U.S.C. § 102(b) (2020).
130 See, e.g. Whelan Assocs., 797 F.2d 122; Computer Assocs. Int’l, Inc. v. Altai,
Inc., 982 F.2d 693 (2d Cir. 1992); Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9
F.3d 823 (10th Cir. 1993); Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807 (1st
Cir. 1995), aff’d by an equally divided court, 516 U.S. 233 (1996); MiTek Holdings,
Inc. v. Arce Eng’g Co., 89 F.3d 1548 (11th Cir. 1996); Dun & Bradstreet Software
Servs., Inc. v. Grace Consulting, Inc., 307 F.3d 197 (3d Cir. 2002); Gen. Universal
Sys., Inc. v. Lee, 379 F.3d 131 (5th Cir. 2004).
131 See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (1930) (L. Hand,
C.J.).
132 See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706–12 (2d
Cir. 1992).
133 See id.
134 See id. at 708; Merch. Transaction Sys., Inc. v. Nelcela, Inc., No. CV02-1954-
PHX-MHM, 2009 WL 723001, at *14 (D. Ariz. Mar. 18, 2009); CSS, Inc. v. Her-
rington, No. 2:16-CV-01762, 2017 WL 3381444, at *9 (S.D. W. Va. Aug. 4, 2017).
135 See authorities cited, supra note 134.

148 Journal, Copyright Society of the U.S.A.

The reality is that this use of what the courts call “efficiency” is based
on a false assumption: that there is such a thing as a singular most efficient
computer program to solve a particular problem.136 In reality, efficiency
itself is an amorphous concept — indeed, a utopian goal, at best—within
all engineering-based disciplines including computer science.137 As Pro-
fessor Petroski describes it, “Designing anything, from a fence to a factory,
involves satisfying constraints, making choices, containing costs, and ac-
cepting compromises.”138 There is no single point of efficiency for any
engineered project, including software.

Unfortunately, when examining use of efficiency within the case law
examining computer software, the existence of “constraints, . . . choices,
. . . costs, and . . . compromises”139 in creating the program are not incor-
porated into the decision-making.140 The court, often triggered by the
party challenging the copyright, determines that the program is efficient so
it must be an idea under § 102(b).141 To both avoid this and understand
why it can never succeed, the complexity of defining efficiency within a
computer program must be appreciated.142 In fact, efficiency within a pro-
gram can be defined in numerous, but inconsistent ways, the more com-
mon of which are described next.

A. A Non-Exhaustive List of Efficiency Definitions

Speed of Execution: Most times, judicial discussions of finding effi-
ciency in a computer program appears to be alluding to a determination

136 Even the legal literature has long acknowledged that computational efficiency
is not the primary goal of most computer software creation. See Peter S. Menell,
An Analysis of the Scope of Copyright Protection for Application Programs, 41
STAN. L. REV. 1045, 1052 (1989). What has not been recognized, however, is that
efficiency, itself, cannot be precisely defined and is thus unobtainable.
137 See HENRY PETROSKI, SMALL THINGS CONSIDERED 4–13 (2003); David Hem-
mendinger, Procedure-Oriented Languages in ENCYCLOPEDIA OF COMPUTER SCI-

ENCE 1441 (Anthony Ralston et al. eds., 4th ed. 2000) (describing how these
“higher-level” languages make coding faster and allow for less hardware depen-
dency — both forms of efficiency — even though assembly language would oper-
ate more directly and speedily—an alternate form of efficiency). See generally
SHERIF D. EL WAKIL, PROCESSES AND DESIGN FOR MANUFACTURING 10–12 (2d
ed. 2002) (describing engineering trade-offs and stating that “the most efficient
design . . . is . . . the one that would be favored by the customers and/or the society
as a whole”); Code Efficiency, TECHOPEDIA (MAR. 14, 2017), https://
www.techopedia.com/definition/27151/code-efficiency.
138 PETROSKI, supra note 137, at 13.
139 Id.
140 See Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992).
141 See id.
142 See Patricia B. Van Verth, Software Metrics in ENCYCLOPEDIA OF COMPUTER

SCIENCE 1627, 1628–30 (Anthony Ralston et al. eds., 4th ed. 2000) (describing mul-
tiple ways of “measur[ing] . . . software”).

Creativity of Computer Programmers 149

that would calculate the number of computer instructions that will need to
be executed to complete its task.143 Apparently, if this number is smaller
than other ways of programming the computer, this version of the pro-
gram would be found to be the most efficient and would be excluded from
copyright protection under the determination that it is an idea.144

In reality, doing this cannot work. Simply counting the number of in-
structions executed by a program is not meaningful as different basic in-
structions (such as multiplication and addition) take a different amount of
time to execute.145 Even if this were not true, there is no easy way to
determine how many instructions will need to be executed just by examin-
ing the algorithm. For most — except the most trivial ones — it is mathe-
matically impractical (or, for some algorithms, impossible) to calculate the
number of steps that will be needed.146 As importantly, for many algo-
rithms, the actual data being processed will affect the number of execution
steps needed, potentially radically.147 Thus, as a general matter, any cal-
culation of the speed in this way will be accurate only for the particular
variation of data to be processed.148

To avoid this problem, a proxy for speed of execution could be ob-
tained by determining the amount of clock-time that is needed for the pro-

143 See, e.g., Computer Assocs., 982 F.2d at 708.
144 See id.
145 See Is multiplication slower than addition on modern CPUs?, RESEARCHGATE

(Feb. 23, 2018), https://www.researchgate.net/post/Is-multiplication-slower-than-
addition-on-modern-CPUs (comparing the speed of adding and multiplying num-
bers and estimating that multiplication takes three times longer). See generally
Dennis J. Frailey, Computer Architecture in ENCYCLOPEDIA OF COMPUTER SCI-

ENCE 304, 313–15 (Anthony Ralston et al. eds., 4th ed. 2000) (discussing the vari-
ous ways computers have been designed); Shmuel Winograd, How Fast Can
Computers Add?, SCI. AM., Oct., 1968, at 93 (detailing how the electronics under-
lying mathematical operations work).
146 See DONALD E. KNUTH, FUNDAMENTAL ALGORITHMS 7 (2d ed. 1973); id. at
10–92 (describing the mathematical methods needed to evaluate an algorithm); id.
at 94–102 (analyzing the average execution speed of a simple method of determin-
ing the largest number in a list).
147 See id. at 95–96.
148 See id. at 96 (stating that the determination of execution speed of an algorithm
will result in a minimum, maximum, and average value determined by the dataset
being processed); DONALD E. KNUTH, SORTING AND SEARCHING 73–75 (1973)
(stating that about twenty-five methods of putting data into a set order will be
discussed, each having its own “advantages and disadvantages”). As an example,
using an “insert-sort” algorithm (the technique most card players use to order their
hand by suit and rank) is generally considered one of the slowest ways for a com-
puter to place information in order, but it will excel if the data are already highly
ordered. See id. at 110.

150 Journal, Copyright Society of the U.S.A.

gram to complete known as “bench-marking,”149 but this produces
inconsistent results for two primary reasons. First, as before, the data used
in the bench-marking attempt will affect the results, often dramatically.150

Second, the multitasking nature of the modern computer will affect the
accuracy of the results.151 With a multitasking computer, the other
processes that are active during each bench-marking attempt will produce
widely variable bench-marking results.152 Dedicating the computer to a
particular task to avoid this leads to an equally unreliable result as modern
computers are always multitasking,153 so the measured benchmark will be
significantly different than reality, particularly if the program being mea-
sured used a commonly needed secondary resource — the main data stor-
age disk being the primary example — as the competition for this
resource will significantly raise the bench-marked result.154

In addition to being very difficult to measure, the basic speed of exe-
cution is most often irrelevant in the real world of software design. Unless
a developed program operates too slowly, the other “efficiency” consider-
ations discussed below are of higher import.155 As long as the program is
“fast enough,” there is no concern about increasing the speed more.

149 See Rudi Eigenmann, Benchmarks in ENCYCLOPEDIA OF COMPUTER SCIENCE

137 (Anthony Ralston et al. eds., 4th ed. 2000).
150 See id. at 139.
151 See id. at 137–39.
152 See Walter F. Tichy, Multitasking in ENCYCLOPEDIA OF COMPUTER SCIENCE

1210 (Anthony Ralston et al. eds., 4th ed. 2000) (describing how a multitasking
computer shares its resources among various programs that appear to be running
simultaneously). Almost all modern computers, from cell phones to super com-
puters, multitask. See id.
153 Many modern computers have multiple processors which can avoid competi-
tion at that level unless more tasks are active than the number of processors. Id. at
1210. When this happens, one or more of the processors must be shared, called
“multiplexing.” Id. If multiplexing is needed, the bench-marking results will be
much higher. See Id.
154 See id. This problem results particularly if a physical, spinning hard disk is used
as the latencies cause by disk rotation and head movement are significant limita-
tions on execution speed. See David N. Freeman, Access Time in ENCYCLOPEDIA

OF COMPUTER SCIENCE 8, 8–9 (Anthony Ralston et al. eds., 4th ed. 2000). The
issue also comes up, although it is of smaller magnitude, for the newer silicon
“disks” that have no rotational or head-seek delays because the interface they use
to be compatible with all software introduce significant delays as does the slower
operating speed of the memory chips used. See Stephen J. Rogowski, Hard Disk in
ENCYCLOPEDIA OF COMPUTER SCIENCE 767, 768 (Anthony Ralston et al. eds., 4th
ed. 2000).
155 In the study of computer programmer creativity reported on above, for exam-
ple, each programmer was required to produce code that would provide an answer
within a maximum of five minutes of computer clock-time, but had no incentive to
produce code that was faster than this. Programming Creativity, supra note 17, at 4.
In the computer science-trained authors’ collective experience, this is a common

Creativity of Computer Programmers 151

Technology Needed: In most ways, the decision about what technol-
ogy (particularly hardware) is available on which to execute the software
will be more determinative of overall program speed than anything else.
If the hardware that is available is primitive, the software written for it will
need to be highly limited in its functionality or it will operate at unaccept-
ably slow speeds.156 Equally, if the hardware is powerful, much more ena-
bled software becomes possible.157 Consequently, the computer system’s
maximum capability is more determinative of execution speed than how
the programmer has chosen to write the software.158

Of course, the decision point for what hardware is available can be
reduced to a common problem: the amount of money available for the
project. Very capable hardware carries a large price tag.159 Consequently,

approach to execution speed, particularly in commercial software development.
All users want their software to be faster, but none seem willing to pay the price
that would be needed for the speed to be provided.
156 A simple comparison between the processing done by a standard piece of con-
sumer electronics (a PC, cell phone, or automobile interface, as examples) and the
kind of technology used by online businesses is illuminating. Most have been sur-
prised by the predictive technology that attempts to determine what other music,
movie, or other product we would like to buy or, similarly, shows an advertisement
that seems to know what we have been doing recently. The computer processing
necessary to do this is intensive, usually required large arrays of multiple com-
puters so that the billions on lines of data can be processed quickly enough. Cf.
Top 18 Advertising Analytics Software, PAT RESEARCH, https://www.predictiveana
lyticstoday.com/top-advertising-analytics-software (last visited July 23, 2022 11:48
AM), If an attempt were made to do this on consumer-level computer technology,
it would take too long to finish. The automobile interface would be particularly
bad at this as, it seems, most systems do not have the capacity to activate a back-up
camera and turn off the music system at the same time.
157 This increase in capabilities is often accompanied by a decrease in the speed of
execution. See Niklaus Wirth, A Plea for Lean Software, 28 COMPUTER, Feb., 1995,
at 64.
158 Cf. id. Also, this is not a stable determination over time. Programs that are run
routinely today — machine learning or weather forecasting, as examples — would
be incapable of operation on the computers of the last century. Cf. NAT’L RSCH.
COUNCIL, THE FUTURE OF COMPUTING PERFORMANCE: GAME OVER OR NEXT

LEVEL at 55 (2011) (showing thousand-fold increase in computer performance be-
tween 1985 and 2010). Likewise, the software developed for the first generation of
widely available personal computers would be seen today as amusing examples of
incompetence even though the execution speed would be quick. For example, it is
hard to imagine that Wordstar; an early (and market dominating) non-
WYSIWYG, micro-based word processor; would successfully process the complex-
ities of a typical law review article, particularly if the user of the software is not
sophisticated in the operation of a computer. See Winword, WordStar 0.x/1.x,
WINWORLD, https://winworldpc.com/product/wordstar/0x1x (last visited Apr. 18,
2022).
159 Cf. Paul E. Ceruzzi, Digital Computers Since 1950 in ENCYCLOPEDIA OF COM-

PUTER SCIENCE 552 (Anthony Ralston et al. eds., 4th ed. 2000).

152 Journal, Copyright Society of the U.S.A.

rather than being a way of distinguishing between an expression and its
underlying idea, establishing computer program efficiency may be better
appreciated as merely a measurement of the wealth of the entity produc-
ing or running it.

Cost of Producing the Code: Another way to measure the efficiency of
computer code is to evaluate the cost of producing it.160 If developing the
program is beyond the resources of a company, no other efficiency has
meaning other than looking for ways to minimize or eliminate these costs;
indeed, one can posit that this was a motivation of Google in the Google v.
Oracle case.161 Google knew that programmers could be hired who al-
ready knew how to use Oracle’s Java system with its APIs.162 By appro-
priating these APIs, the efficiency of creating the Android programs were
greatly enhanced, making it more “efficient” than other options by being
significantly cheaper to produce.163 This, of course, had nothing to do
with how well the APIs operated and seems to be completely irrelevant to
whether the APIs are expressions or ideas.164

Another example of this factor was the development of the “very high
level languages” (“VHLL”) and other nonprocedural programming tech-
niques starting in the late 1960s and early 1970s.165 These programs were
designed to simplify programming by removing any concern for the details
of the underlying machine’s operation, being problem-oriented rather
than procedurally-oriented.166 Some of these VHLLs keep the basic pro-
cedural predicates that have been used since the early years of computer
programming but remove the need for the programmer to understand how
the underlying computer hardware works167 while others remove the
predicates, too, and just require English-like statements of the desired re-

160 See FREDERICK P. BROOKS, JR., THE MYTHICAL MAN-MONTH (Anniversary
ed. 1995). As Professor Brooks discusses, even defining these costs are extraordi-
narily difficult. See id. at 4.
161 See Google LLC v. Oracle America Inc., 141 S. Ct. 1183, 1190 (2021).
162 See id. (“Google wanted millions of programmers, familiar with Java, to be
able easily to work with its new Android platform”).
163 See id.
164 The reality is, of course, that the APIs, like all other copyrighted works, are a
combination of both. See, e.g., Nichols v. Univ. Pict. Corp., 45 F.2d 119 (1930) (L.
Hand, C.J.).
165 See Burton M Leavenworth, Jean E. Sammet, & David Hemmendinger, Non-
procedural Languages in ENCYCLOPEDIA OF COMPUTER SCIENCE 1244 (Anthony
Ralston et al. eds., 4th ed. 2000).
166 See id.; C. WILLIAM GEAR, COMPUTER ORGANIZATION AND PROGRAMMING

14–16 (1969).
167 A popular example here would be Java which places its procedural aspects
within “methods” which are then easily reused. See Thimbleby, supra note 3, at
937.

Creativity of Computer Programmers 153

sult.168 But there is a dark side to these VHLLs: the operating program
will be significantly slower in operation and require significantly more
hardware capability than a similar program written in a harder to use lan-
guage.169 In other words, coding ease and efficiency comes at the expense
of operational efficiency: if you have one you cannot have the other.

Ease of Modification: Another way of defining efficiency is to deter-
mine how easy it is to modify the software for new or changing pur-
poses.170 Most modern software is revised on a regular basis.171 A good
example of this would be any of the tax preparation software that is on the
market.172 As tax laws change on a regular basis, making it possible to
easily incorporate the new laws becomes an efficiency consideration for
the company; indeed, this consideration is likely to be predominant than
other efficiency factors.173 Most times, however, this ease of modification
results in a computer program that is computationally slower.174

168 See Leavenworth, supra note 165, at 1245. A prime example here is Focus, see
Focus, WIKIPEDIA (Feb. 13, 2022 14:28 UTC), https://en.wikipedia.org/wiki/FO-
CUS, but the command structure found within Excel would also qualify; indeed,
the automated voice response systems such as Alexa/Assistant/Cortana could also
be considered the ultimate goal of this kind of software. For a general discussion
of the current status of computers understanding spoken language, see Hang Li,
Language Models: Past, Present and Future, COMM. OF THE ACM, July, 2022, at 56.
169 See Mark Gibbs, A High-Level Language Worthy of Your Tool Kit, NETWORK

WORLD, June 14, 1999, at 44 (“if you want raw speed, [VHLL] aren’t the way to
go.”). For Alexa/Assistant/Cortana, the needed computer power is somewhat hid-
den from the user as the real processing power, being well beyond anything lo-
cated in most people’s house, is handled by a cloud-based (what used to be called
distributed) computing service. See Richard Baguley & Colin McDonald, Appli-
ance Science: Alexa, how does Alexa work? The science of the Amazon Echo,
CNET (Aug. 4, 2016 5:00 AM PT), https://www.cnet.com/home/smart-home/appli-
ance-science-alexa-how-does-alexa-work-the-science-of-amazons-echo/.
170 See Marvin Zelkowitz, Perspectives of Software Engineering, 10 COMPUTING

SURVEYS 197 (1978) (discussing the life-cycle of computer software systems);
Videla, supra note 28, at 56–58; Benjamin Mittman & Jean E. Sammet, Problem-
Oriented Languages in ENCYCLOPEDIA OF COMPUTER SCIENCE 1433 (Anthony
Ralston et al. eds., 4th ed. 2000) (discussing the advantages of programming ap-
proaches that emphasize non-technical coding to enable ease of programming).
171 See, e.g., Microsoft Word, MICROSOFT WIKI (last visited Apr. 20, 2022 10:42
AM), https://microsoft.fandom.com/wiki/Microsoft_Word (listing at least thirty
versions of the Word program). Cf. supra note 117 (discussing the current use and
modification of business software).
172 See, e.g., Manually Update TurboTax Business Software, TURBOTAX (last vis-
ited June 22, 2022 2:07 PM), https://ttlc.intuit.com/turbotax-support/en-us/help-ar-
ticle/update-products/manually-update-turbotax-business-software/
L3WqYBBgc_US_en_US (describing annual updates).
173 Cf. id.
174 See Mittman & Sammet, supra note 170 (recognizing that non-technical coding
produces programs that often take significantly longer to execute).

154 Journal, Copyright Society of the U.S.A.

Reducing Software Bugs: A recurrent problem in computer science is
developing ways that error-free software can be produced.175 Among the
techniques discussed by Professor Brooks is the use of top-down design
and structured programming to develop new software.176 By imposing
these artificial organizations on the developing code, many mistakes in
coding can be avoided in the first place or, at least, made easier to find and
repair as the development continues.177 Similarly, the recent development
and use of object-oriented programming, including Java, further abstracts
the coding process by defining specific fields with their associated attrib-
utes combined with methods for processing the data.178 The ability to pro-
gram at this higher level of abstraction is not free, however, as the
implemented code will almost certainly need more clock-time to
operate.179

Interoperability: An early and continuing issue in developing com-
puter programs was the lack of interoperability. A program that was writ-
ten to run on an IBM mainframe would not operate on another company’s
machine, e.g., Honeywell or Digital Equipment.180 Similarly, programs
developed for the first microcomputers that were based on the 8080/Z80
family of chips and the CP/M operating system would not operate on the
8088/8086 hardware family using PC-DOS (and now Windows) that was
found in IBM-branded microcomputers.181 Of course, if programs rou-

175 See BROOKS, supra note 160, at 142–50.
176 Id. at 143–44.
177 See id. These techniques have provided some help in producing error-free
code, but the problem persists, partially because computer languages, like other
human-created languages, contain fundamental ambiguities. See Alvaro Videla,
Meaning and Context in Computer Programs, COMM. OF THE ACM, May, 2022, at
56.
178 See Peter Wegner, Object-Oriented Programming (OOP) in ENCYCLOPEDIA

OF COMPUTER SCIENCE 1279 (Anthony Ralston et al. eds., 4th ed. 2000).
179 See BROOKS, supra note 160, at 143 (discussing top-down design’s use of mod-
ules); Luca Cardelli, Bad Engineering Properties of Object-Oriented Languages,
ACM COMPUT. SURV., Dec., 1996, at 28 (discussing object-oriented coding). To
implement these programming approaches, multiple subroutine calls are normally
used. See Adrienne Bloss & J.A.N. Lee, Subprogram in ENCYCLOPEDIA OF COM-

PUTER SCIENCE 1708 (Anthony Ralston et al. eds., 4th ed. 2000). Each call has a
small execution speed overhead which can be significant if the module is used
often. See Edwin D. Reilly, Calling Sequence in ENCYCLOPEDIA OF COMPUTER

SCIENCE 193, 194 (Anthony Ralston et al. eds., 4th ed. 2000) (describing the pro-
cess steps needed to pass a parameter to a subroutine).
180 See Paul E. Ceruzzi, History of Digital Computers Since 1950 in ENCYCLOPE-

DIA OF COMPUTER SCIENCE 552, 554–55 (Anthony Ralston et al. eds., 4th ed.
2000).
181 See Larry D. Wittie, Microprocessors and Microcomputers in ENCYCLOPEDIA

OF COMPUTER SCIENCE 1161, 1166 (Anthony Ralston et al. eds., 4th ed. 2000). To a
certain extent, this incompatibility was artificially created as a marketing decision

Creativity of Computer Programmers 155

tinely could operate on alternate hardware, the efficiency of not having to
reprogram the application for each hardware platform would be gained.

Indeed, the Java language underlying the Google case became popu-
lar substantially because it overcomes much of the interoperability prob-
lem.182 One powerful part of Java is known as the Java Virtual
Machine.183 Until this century, most computer languages would compile
into the native machine language for a particular computer or would be
interpreted by software that could only run on a particular type of hard-
ware.184 More recently, languages such as Java do not do this, producing
instead an “intermediate language” version.185 This allowed new parties
who wished to use Java on different hardware to write their own version of
the Virtual Machine — a much smaller programming task than rewriting
all of Java — which could then execute any Java code on the different
computer.186 Java’s efficiency, therefore — indeed, maybe its key effi-
ciency — is its high level of interoperability. The required trade-off is also
there: no one has ever accused Java of executing quickly.187

B. The Use of Efficiency as a Measure of Copyrightability Fails
Causing Worthy Programs to be Unprotected

These examples of the different kinds of efficiency that can be found
in computer software demonstrates the fallacy in asking whether a piece of
software is “efficient.” Even that question standing alone is nonsensical.

when the IBM PC was first released to help IBM capture a majority of the devel-
oping microcomputer marketplace but also owed its origin, as many business deci-
sions do, to happenstance. See Jeremy Reimer, Total Share: 30 Years of Personal
Computer Market Share Figures, ARSTECHNICA (Dec. 15, 2005, 12:00 AM), https:/
/arstechnica.com/features/2005/12/total-share/.
182 See Thimbleby, supra note 3, at 937. This is not to minimize the importance of
its object-oriented approach to programming that makes it easier to develop the
code, particularly Internet- and Web-based programs, in the first place. See id. at
938–39.
183 Id. (describing the Java Virtual Machine).
184 See, e.g., IBM SYSTEM/360 OPERATING SYSTEM PL/I (F) COMPILER: PROGRAM

LOGIC MANUAL 13–15 (1966), http://www.bitsavers.org/pdf/ibm/360/pli/ Y28-6800-
1_PL1(F)_PLM_Sep66.pdf.
185 See Ron Cytron, Intermediate Languages in ENCYCLOPEDIA OF COMPUTER

SCIENCE 910 (Anthony Ralston et al. eds., 4th ed. 2000). Importantly, of course,
other languages other than Java have used the intermediate language technique
without appropriating any of the Java Virtual Machine language. See, e.g., PETER

TRÖGER, PYTHON (2.5) VIRTUAL MACHINE: A GUIDED TOUR, (Apr. 2008), http://
www.troeger.eu/teaching/pythonvm08.pdf.
186 See Cytron, supra note 185.
187 See When Is Java Faster Than C++?, FORBES (May 26, 2015, 01:26 PM), https://
www.forbes.com/sites/quora/2015/05/26/when-is-java-faster-than-c/
?sh=20e2f17e3100 (estimating that Java executes three times slower than C++).

156 Journal, Copyright Society of the U.S.A.

Going farther and attempting to use it to separate computer software ex-
pression from idea compounds the problem.

A similar type of question would be to ask whether a particular bridge
across a river is the most “efficient” way of building one.188 Its designers
certainly had to consider traffic (both quantity and weight) using the cross-
ing, but also had to incorporate a wide range of other consideration —
often including concerns not dictated by the engineering such as local and
national politics — before a design could be established. Similarly, pro-
grams, like other engineering projects, can only be measured against the
criteria individually established for them. As all engineering requires dif-
ferent characteristics, advantages, and costs to be set-off against each
other,189 there is no single way to measure “efficiency.” To make measur-
ing “efficiency” a critical component of determining the nature of com-
puter software, therefore, is ridiculous.

Also, this again demonstrates the complexity of expression that un-
derlies a computer program. Programmers do not seek some mystical
point of efficiency; instead, like all other engineers, they seek to find the
balance of considerations that produce a functioning program (as defined
by the user) within the bounds of the numerous technological factors
under which they operate.

The protocol of using the levels of abstraction within a computer pro-
gram to find the magical copyright line between an idea and its expression
is beyond reproach. It has worked for most copyrighted works and will
work for programs. To expect this analysis to be factually simple and re-
ducible to a single factor is not realistic. Computer software is like other
copyrighted works that require considerable effort to separate the ideas
from the protected expression. Short-changing the effort by only focusing
on a false notion of efficiency will leave important parts of the software
expression unprotected.

V. CONCLUSION

Determining what aspects of a computer program are copyright pro-
tected and what ones are not will present factually hard problems. This, of
course, has been true for most other copyrighted works, too. For a work
of literature, for example, the actual words used in the work clearly are
protected in their literal form while the bare plot upon which it is based is

188 In literature, the same point can be raised by asking if Ernest Hemingway’s
writing is an idea while James Joyce’s is not because Hemingway writes more “effi-
ciently” by using fewer words than Joyce does.
189 See PETROSKI, supra note 137, at 13.

Creativity of Computer Programmers 157

not.190 Any author can decide to write a work based on the “wrong two
people meet and come to tragic ends” plot but they cannot grab the latest
romance novel version of this plot and engage in wholesale verbatim copy-
ing.191 The factually difficult questions come when the second author does
not copy verbatim, but does copy enough of the first author’s expression
so that the essence of the expression has been appropriated.192 In the
same way, the programmer who creates a system of APIs certainly should
obtain protection for the literal code but cannot complain if another
programmer independently creates another API system.193 If the second
programmer takes the expressive essence of the first programmer’s API
system and recreates that, non-literal copying has occurred and copyright
liability would seem to be appropriate.194

Most contested copyright litigation is not easy. In literature-based
cases, for example, the whole work is not taken verbatim; instead, more
details are added (or, more likely, left in place) to the common plot by the
second author so that the new work seems to be a continuation of the old
one.195 At some point in this kind of process, too much of the original
expression will be taken so that infringement will be found.196 For com-
puter software, this same difficulty occurs. A programmer is free to ex-
press another object-oriented computer language that relies greatly on
APIs, but if it is too directly appropriated from an existing expression —
Oracle’s Java, for example—infringement occurs.197

It is a mistake, however, to conclude that the second programmer
should be allowed to appropriate the literal code created by the first be-
cause § 102(b) (or the merger doctrine) always requires that result. Al-

190 PAUL GOLDSTEIN, GOLDSTEIN ON COPYRIGHT § 9.1.1 (3d ed. 2022-2 supp.
2022) (establishing infringement as being clear when “the defendant’s 300-page
novel track[s] the plaintiff’s 300-page novel word for word”).
191 See Mazer v. Stein, 347 U.S. 201, 217–18 (1954).
192 See, e.g., Salinger v. Random House, Inc., 811 F.2d 90, 98 (2d Cir.), opinion
supplemented on denial of reh’g, 818 F.2d 252 (2d Cir. 1987).
193 Cf. id. (involving non-software).
194 See, e.g., Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173,
1175–76 (9th Cir. 1989).
195 Cf. Warner Bros. Ent. Inc. v. RDR Books, 575 F. Supp. 2d 513, 536 (S.D.N.Y.
2008) (finding that a lexicon of “fictional facts” that had been created by the plain-
tiff was infringing).
196 See Penguin Random House, LLC v. Colting, 270 F. Supp. 3d 736, 747
(S.D.N.Y. 2017) (“copy[ing] substantial aspects of the themes, characters, plots,
sequencing, pace, and settings of plaintiffs’ Novels” infringes); GOLDSTEIN, supra
note 190, at § 9.1.2 (“the hardest case is the one in which the defendant’s work
reflects only structural similarities to the plaintiff’s — similarities in plot, incident
and character in literary works. . . .”).
197 See Johnson Controls, 886 F.2d at 1175-76. Again, this analysis does not factor
in the fair use defense.

158 Journal, Copyright Society of the U.S.A.

though computer programs are expressive of procedures to accomplish
particular results,198 they are not procedures in themselves. As has now
been established, the reality of programming is such that there are many
ways to express each computer procedure or algorithm, so requiring the
second author to do so independently is consistent with Congress’s intent
to provide copyright protection for computer programs.199 This means
that courts should treat programs in a way that is similar to “regular”
copyrighted work. When doing that kind of analysis, the court does not
start with an assumption that the work is an idea unless it can establish
itself as something more; it goes the other way and only excludes some-
thing as an idea if it is established as one.200 So too should a program be
treated as an expression, with the court only eliminating aspects of it that
are within the exclusion of § 102(b).

198 See 17 U.S.C. § 101 (defining “computer program”).
199 See supra section II.
200 See Nichols v. Univ. Pict. Corp., 45 F.2d 119 (1930) (L. Hand, C.J.).

